In-Sample vs. Out-of-Sample Tests of Stock Return Predictability in the Context of Data Mining

David E. Rapach
Department of Economics
Saint Louis University
3674 Lindell Boulevard
Saint Louis, MO 63108-3397
Phone: 314-977-3601
Fax: 314-977-1478
E-mail: rapachde@slu.edu

Mark E. Wohar*
Department of Economics
University of Nebraska at Omaha
RH-512K
Omaha, NE 68182-0286
Phone: 402-554-3712
Fax: 402-554-2853
E-mail: mwohar@mail.unomaha.edu

February 1, 2005 (Revised)

Abstract

In this paper, we undertake an extensive analysis of in-sample and out-of-sample tests of stock return predictability in an effort to better understand the nature of the empirical evidence on return predictability. We show that a number of financial variables appearing in the literature display both in-sample and out-of-sample predictive ability with respect to stock returns in annual data covering most of the twentieth century. In contrast to the extant literature, we demonstrate that there is little discrepancy between in-sample and out-of-sample test results once we employ recently developed out-of-sample tests with good power properties. While conventional wisdom holds that out-of-sample tests help guard against data mining, Inoue and Kilian (2004) recently argue that in-sample and out-of-sample tests are equally susceptible to data mining biases. With this in mind, we test for return predictability using a bootstrap procedure that explicitly accounts for data mining when calculating critical values, and we still find that certain financial variables display significant in-sample and out-of-sample predictive ability with respect to stock returns.

JEL classifications: C22, C52, C53, G12, G14

Key words: Stock return predictability; Nested models; In-sample tests; Out-of-sample tests; Data mining

*Corresponding author. The authors thank seminar participants at the Cass School of Business, University of Durham, University of Essex, and 2003 Missouri Economics Conference for helpful comments. The authors are also very grateful to Todd Clark, Lutz Kilian, Mike McCracken, Chris Weber, and two anonymous referees for many useful comments. The usual disclaimer applies. The results reported in this paper were generated using GAUSS 3.6. The GAUSS programs are available at http://pages.slu.edu/faculty/rapachde/Research.htm.
1. Introduction

There now exists a voluminous literature on the predictability of stock returns from past information. Interestingly, researchers have identified a large number of financial variables that appear to predict future stock returns. These include the dividend-price ratio (Rozeff, 1984; Campbell and Shiller, 1988a; Fama and French, 1988; Hodrick, 1992), price-earnings ratio (Campbell and Shiller, 1988b, 1998), book-to-market ratio (Kothari and Shanken, 1997; Pontiff and Schall, 1998), market value-to-net worth ratio or “Fed q” (Smithers and Wright, 2000; Robertson and Wright, 2002), dividend-payout ratio (Lamont, 1998), term and default spreads on bonds (Campbell, 1987; Fama and French, 1989), short-term interest rate (Campbell, 1987; Hodrick, 1992; Ang and Bekaert, 2001), equity share in total new equity and debt issues (Baker and Wurgler, 2000), and consumption-wealth ratio (Lettau and Ludvigson, 2001). The evidence for the predictability of stock returns comes primarily from in-sample predictive regression models. While there are important econometric difficulties relating to the lack of exogenous regressors and overlapping observations in predictive regression models (Mankiw and Shapiro, 1986; Stambaugh, 1986, 1999; Richardson and Stock, 1989; Nelson and Kim, 1993), Campbell (2000, p. 1523) nevertheless concludes, “Despite these difficulties, the evidence for predictability survives at reasonable if not overwhelming levels of statistical significance. Most financial economists appear to have accepted that aggregate returns do contain an important predictable component.”

While Campbell (2000) is probably correct in his assessment, as noted above, the extant literature primarily relies on in-sample tests of stock return predictability. This raises concerns of data mining, also referred to as model overfitting or data snooping. Lo and MacKinlay (1990) and Foster, Smith, and Whaley (1997) provide theoretical analyses of data mining in the context of return predictability. It is typically believed that out-of-sample tests provide a measure of protection against data mining, as statistical models are tested using out-of-sample observations that are not used in the estimation of the statistical model itself. It is interesting to note that the relatively few studies that employ out-of-sample

1 The studies cited are representative and do not constitute an exhaustive list.
tests of return predictability typically obtain negative results. For example, in an effort to guard against model overfitting, Bossaerts and Hillion (1999) use different model selection criteria to choose the best forecasting model of real stock returns for a number of industrialized countries over the postwar period. Testing for out-of-sample forecasting power by regressing actual returns on the forecasts from the best models, they find that the best forecasting models for the United States fail to have significant out-of-sample forecasting power for S&P 500 excess returns at the 1-month horizon over the 1990:06-1995:05 out-of-sample period. They thus conclude that there is no external validation of the best forecasting models. Goyal and Welch (2003) also employ out-of-sample tests. They examine the predictive ability of the dividend-price ratio for CRSP value-weighted annual excess returns over the 1926-2000 period. While they find evidence of in-sample predictability, a model that includes the dividend-price ratio exhibits little out-of-sample predictive ability compared to a model of constant returns according to the Diebold and Mariano (1995) and West (1996) statistic. The negative results typically generated by out-of-sample tests suggest that the in-sample evidence of return predictability is spurious.

The disparities between in-sample and out-of-sample test results of return predictability in the literature make an overall assessment of return predictability difficult. In this paper, we undertake an extensive analysis of both in-sample and out-of-sample tests of stock return predictability in an effort to better understand the empirical evidence on return predictability. We test whether the financial variables cited in the opening paragraph exhibit significant in-sample and out-of-sample predictive ability with respect to stock returns on the S&P 500 and CRSP equal-weighted portfolios. We follow the literature and assess in-sample predictability via the t-statistic corresponding to the slope coefficient in a predictive regression model. In order to test for out-of-sample predictability, we compare out-of-sample forecasts generated by a model of constant returns to forecasts generated by a model that utilizes a given financial variable using two recently developed test statistics. The first, due to McCracken (2004), is a variant of

2 Goyal and Welch (2003) use the standard normal as the limiting distribution for the Diebold and Mariano (1995) and West (1996) statistic. However, McCracken (2004) shows that this statistic has a non-standard limiting distribution when comparing forecasts from nested models, as Goyal and Welch (2003) do.
the Diebold and Mariano (1995) and West (1996) statistic that tests for equal predictive ability. We also use a statistic designed to test for forecast encompassing, a variant of the Harvey, Leybourne, and Newbold (1998) statistic due to Clark and McCracken (2001). Importantly, Clark and McCracken (2001, 2004) find the variants to be considerably more powerful than the original statistics in extensive Monte Carlo simulations. These more powerful tests may thus be better equipped to detect out-of-sample predictability than the statistics typically used in the return predictability literature.

Using annual data for 1927-1999 and S&P 500 real stock returns, we find that the equity share has significant in-sample predictive ability at the 1-year horizon, the term spread has significant in-sample predictive ability at the 5-year horizon, and the price-earnings ratio and Fed q have significant in-sample predictive ability at the 10-year horizon. At least one of the McCracken (2004) and Clark and McCracken (2001) statistics also provides significant evidence of out-of-sample predictive ability for these same variables over the 1964-1999 out-of-sample period. For this data set, there is no discrepancy between the in-sample and out-of-sample test results once we use powerful out-of-sample tests. When we measure real returns based on the CRSP equal-weighted index, we identify four variables—book-to-market ratio, Fed q, default spread, and equity share—with significant in-sample predictive ability at the 1-year horizon. The dividend-price ratio and equity share display significant in-sample predictive ability at the 5-year horizon, and the short-term interest rate evinces significant in-sample predictive ability at the 10-year horizon. Some of these variables also display significant out-of-sample predictive ability. Overall, we find relatively little discrepancy between the results from in-sample and out-of-sample tests of predictability for our annual data, and we attribute this to our use of recently developed out-of-sample tests with good power properties.3

According to “conventional wisdom,” our out-of-sample evidence of stock return predictability is more reliable than our in-sample evidence, as it is less susceptible to data mining. However, Inoue and

3 We also test for stock return predictability using postwar quarterly data for 1953:2-2000:4. Using S&P 500 and CRSP equal-weighted returns, we find that a number of variables demonstrate significant predictive ability according to both in-sample and out-of-sample tests.
Kilian (2004) recently challenge the conventional wisdom and argue that out-of-sample tests should not
be preferred to in-sample tests, as in-sample and out-of-sample tests are equally susceptible to data
mining. Indeed, Inoue and Kilian (2004) show that, if appropriate critical value are used, in-sample and
out-of-sample tests of predictability are equally reliable against data mining under the null hypothesis of
no predictability. Given the findings in Inoue and Kilian (2004), we compute appropriate critical values
for all of our in-sample and out-of-sample statistics based on a data-mining bootstrap procedure. Even
when we explicitly take data mining into account through the data-mining bootstrap procedure, we still
identify some financial variables with significant in-sample and out-of-sample predictive ability.

As a cautionary note, we emphasize that we are concerned with testing for the existence of return
predictability in population. This is a conceptually and practically distinct issue from whether a
practitioner in real time could have constructed a portfolio that earns extra-normal returns. A practitioner
is interested in ranking models—without necessarily caring about the significance of any differences—and selecting the best forecasting model according to a profit-based metric. In contrast, predictability
tests are designed to test for the existence of a predictive relationship in population.

The rest of the paper is organized as follows. Section 2 presents our econometric methodology;
Section 3 reports the in-sample and out-of-sample predictability test results; Section 4 summarizes our
main findings.

2. Econometric Methodology

2.1. In-Sample Predictability

Studies of the predictability of stock returns are typically predicated on the following predictive

4 Inoue and Kilian (2004) actually favor in-sample over out-of-sample tests of predictability, as in-sample tests
typically are more powerful when both kinds of tests use appropriate critical values.

5 See Pesaran and Timmerman (1995) and Cooper, Gutierrez, and Marcum (2001) for examples of studies that
examine whether portfolios that earn extra-normal returns could have been constructed in real time. In addition, we
note that, as emphasized by Fama (1991), return predictability in population does not imply that markets are
inefficient, as time-varying returns may be an equilibrium phenomenon.

6 See Lettau and Ludvigson (2002) and Inoue and Kilian (2004) for more discussion on testing for predictability in
population.
regression model:

\[y_{t+k} = \alpha + \beta \cdot x_t + u_{t+k}, \]

(1)

where \(y_{t+k} \) is the log real return to holding stocks from period \(t \) to \(t+k \), \(x_t \) is a financial variable that is believed to potentially predict future real returns, and \(u_{t+k} \) is a disturbance term. The log real return to stocks, \(y_{t+k} \), is measured by \(y_{t+k} = \sum_{i=1}^{k} r_{t+i} \), where \(r_t = \log[(S_t + D_t) / S_{t-1}] - \log(P_t / P_{t-1}) \), \(S_t \) is the nominal stock price at the end of period \(t \) (or beginning of period \(t+1 \)), \(D_t \) is dividends paid out during period \(t \), and \(P_t \) is the aggregate price level at the end of period \(t \) (or beginning of period \(t+1 \)). Suppose we have observations for \(r_t \) and \(x_t \) for \(t=1,\ldots,T \). This leaves us with \(T-k \) usable observations with which to estimate the in-sample predictive regression model. The predictive ability of \(x_t \) is typically assessed by examining the \(t \)-statistic corresponding to \(\hat{\beta} \), the OLS estimate of \(\beta \) in equation (1), as well as the goodness-of-fit measure, \(R^2 \). \(^7\) Under the null hypothesis of no predictability, \(\beta = 0 \), so that expected returns are constant. Theory often suggests the direction of the effect of \(x_t \) on \(y_{t+k} \) under the alternative hypothesis. We specify all of the financial variables in such a way that \(\beta > 0 \) under the alternative hypothesis. Inoue and Kilian (2004) recommend using theory to specify a one-sided alternative hypothesis for in-sample tests, as this incorporates economic content that makes for more powerful tests.

A well-known potential problem with estimating a predictive regression model like equation (1) is small-sample bias, as \(x_t \) is not an exogenous regressor in equation (1) (Stambaugh, 1986, 1999). In addition, the observations for the regressand in equation (1) are overlapping when \(k > 1 \) and thus not independent (Richardson and Stock, 1989). This induces serial correlation in the disturbance term, \(u_{t+k} \), and the standard errors used in constructing \(t \)-statistics need to account for this. A common procedure is to use Newey and

\(^7\) Following Baker and Wurgler (2000), we first divide \(x_t \) by its standard deviation over the full sample. This normalization has no effect on in-sample or out-of-sample statistical inferences, but it makes it easier to compare the estimated \(\hat{\beta} \) coefficient in equation (1) across financial variables, as the coefficient can be interpreted as the change in expected returns given a one-standard-deviation change in the financial variable.
West (1987) standard errors, as these are robust to heteroskedasticity and serial correlation in the disturbance term. (In our applications in Section 3 below, we use the Bartlett kernel and a lag truncation parameter of $[1.5 \cdot k]$, where $[\cdot]$ is the nearest integer function, when calculating Newey and West, 1987 standard errors.) However, even when robust standard errors are used to compute t-statistics, there is a strong tendency for the t-statistic corresponding to $\hat{\beta}$ to increase with the horizon when $\beta = 0$ (Nelson and Kim, 1993; Goetzmann and Jorion, 1993; Kirby, 1997). In these circumstances, basing inferences on standard asymptotic distributions can thus lead to considerable size distortions when testing the null hypothesis of no predictability in equation (1). Given these potential problems, we follow much of the recent literature and conduct inference using a bootstrap procedure similar to the procedures in Nelson and Kim (1993), Mark (1995), Kothari and Shanken (1997), and Kilian (1999). The bootstrap procedure is described in detail below in Section 2.3.

2.2. Out-of-Sample Predictability

We use a recursive scheme used to generate out-of-sample predictions for y_{t+k}. First, we divide the total sample of T observations into in-sample and out-of-sample portions, where the in-sample observations span the first R observations for r_t and x_t. The first out-of-sample forecast for the “unrestricted” predictive regression model, equation (1), is generated by estimating equation (1) via OLS using data available through period R and using the fitted model to construct a forecast for y_{R+k}. Denote the unrestricted model forecast by $\hat{y}_{1,R+k} = \hat{\alpha}_{1,R} + \hat{\beta}_{1,R} \cdot x_R$, where $\hat{\alpha}_{1,R}$ and $\hat{\beta}_{1,R}$ are the OLS estimates of α and β, respectively, in equation (1) using data available through period R, and denote the corresponding forecast error by $\hat{u}_{1,R+k} = y_{R+k} - \hat{y}_{1,R+k}$. The initial forecast for the “restricted” predictive model is generated in a similar manner, except we set $\beta = 0$ in equation (1). Denote the restricted model forecast by $\hat{y}_{0,R+k} = \hat{\alpha}_{0,R}$, where $\hat{\alpha}_{0,R}$ is the OLS estimate of α in equation (1) with β restricted to zero using data available through period R, and denote the corresponding forecast error by $\hat{u}_{0,R+k} = y_{R+k} - \hat{y}_{0,R+k}$. In order to generate a second set of
forecasts, we estimate the unrestricted and restricted models using data available through period \(R + 1 \), and we use the parameter estimates and the observation for \(x_{R+1} \) in order to form unrestricted and restricted model forecasts for \(y_{(R+1)+k} \) and their respective forecast errors, \(\hat{u}_{1,(R+1)+k} \) and \(\hat{u}_{0,(R+1)+k} \). We repeat this process through the end of the available sample, leaving us with two sets of \(T - R - k + 1 \) recursive forecast errors, one each for the unrestricted and restricted regression models (\(\{\hat{u}_{1,t+k}\}_{t=R}^{t=T-k} \) and \(\{\hat{u}_{0,t+k}\}_{t=R}^{t=T-k} \)).

The next step is to compare the out-of-sample forecasts from the unrestricted and restricted models. If the unrestricted model forecasts are superior to the restricted model forecasts, then the financial variable \(x_t \) improves the out-of-sample forecasts of \(y_{t+k} \) relative to a model of constant expected returns. A simple metric for comparing forecasts is Theil’s \(U \), the ratio of the root mean squared errors for the unrestricted and restricted model forecasts. If the mean squared error (MSE) for the unrestricted model forecasts is less than the MSE for the restricted model forecasts, then \(U < 1 \). In order to test whether the unrestricted model forecasts are significantly superior to the restricted model forecasts, we use the McCracken (2004) \(MSE-F \) statistic, a variant of the Diebold and Mariano (1995) and West (1996) statistic designed to test for equal predictive ability. We also use the Clark and McCracken (2001) \(ENC-NEW \) statistic, a variant of the Harvey, Leybourne, and Newbold (1998) statistic designed to test for forecast encompassing.

The \(MSE-F \) statistic is used to test the null hypothesis that the unrestricted model forecast MSE is equal to the restricted model forecast MSE against the one-sided (upper-tail) alternative hypothesis that the unrestricted model forecast MSE is less than the restricted model forecast MSE. Letting

\[
\hat{d}_{t+k} = (\hat{u}_{0,t+k})^2 - (\hat{u}_{1,t+k})^2 \quad \text{and} \quad \overline{d} = (T - R - k + 1)^{-1} \sum_{t=R}^{T-k} \hat{d}_{t+k} = MSE_0 - MSE_1, \quad \text{where} \quad MSE_i = \sum_{t=R}^{T-k} (\hat{u}_{i,t+k})^2, \quad i = 0,1,
\]

the McCracken (2004) \(MSE-F \) statistic is given by

\[
MSE-F = (T - R - k + 1) \cdot \overline{d} / MSE_1.
\]

A significant \(MSE-F \) statistic indicates that the unrestricted model forecasts are statistically superior to those of the restricted model. When comparing forecasts from nested models (as we do) and \(k = 1 \), McCracken (2004)
shows that the \textit{MSE-F} statistic has a non-standard and pivotal limiting distribution, while Clark and McCracken (2004) demonstrate that the \textit{MSE-F} statistic has a non-standard and non-pivotal limiting distribution in the case of nested models and $k > 1$.8 Given this last result, Clark and McCracken (2004) recommend basing inference on a bootstrap procedure along the lines of Kilian (1999). Following this recommendation, we base our inferences on the bootstrap procedure described below in Section 2.3.

Our other statistic, \textit{ENC-NEW}, relates to the concept of forecast encompassing.9 Forecast encompassing is based on optimally constructed composite forecasts. If the restricted model forecasts encompass the unrestricted model forecasts, the financial variable provides no useful additional information for predicting returns relative to a model of constant expected returns. If we reject forecast encompassing, then the financial variable does contain information useful for predicting returns apart from a model of constant returns. The Clark and McCracken (2001) \textit{ENC-NEW} statistic is a variant of the Harvey, Leybourne, and Newbold (1998) statistic, and it takes the form,

$$\text{ENC-NEW} = \frac{(T - R - k + 1) \cdot \bar{c}}{\text{MSE}_1},$$

where \(\hat{c}_{t+k} = \hat{u}_{0,t+k} (\hat{u}_{0,t+k} - \hat{u}_{1,t+k}) \) and \(\bar{c} = (T - R - k + 1)^{-1} \sum_{t=R}^{T-k} \hat{c}_{t+k} \). Under the null hypothesis, the restricted model forecasts encompass the unrestricted model forecasts, while under the one-sided (upper-tail) alternative hypothesis, the restricted model forecasts do not encompass the unrestricted model forecasts. Similar to the \textit{MSE-F} statistic, the limiting distribution of the \textit{ENC-NEW} statistic is non-standard and pivotal for $k = 1$ (Clark and McCracken, 2001), while it is non-standard and non-pivotal for $k > 1$ (Clark and McCracken, 2004) when comparing forecasts from nested models.10 Again, Clark and McCracken (2004) recommend basing inference on a bootstrap procedure given the non-pivotal limiting distribution. As

8 While West (1996) shows that the Diebold and Mariano (1995) and West (1996) statistic has a standard normal limiting distribution when comparing forecasts from non-nested models, McCracken (2004) shows that it has a non-standard limiting distribution when comparing forecasts from nested models.

9 See Clements and Hendry (1998) for a textbook discussion of forecast encompassing.

10 As pointed out by Clark and McCracken (2001), the Harvey, Leybourne, and Newbold (1998) statistic has a standard normal limiting distribution when comparing forecasts from non-nested models according to the theory in West (1996). However, for nested models, Clark and McCracken (2001, 2004) show that it has a non-standard limiting distribution.
mentioned in the introduction, the \textit{MSE-F} and \textit{ENC-NEW} statistics have key power advantages over the original Diebold and Mariano (1995) and West (1996) and Harvey, Leybourne, and Newbold (1998) statistics according to extensive Monte Carlo simulation in Clark and McCracken (2001, 2004).

\subsection*{2.3. Bootstrap Procedure}

For the reasons discussed above in Sections 2.1 and 2.2, we base inferences on a bootstrap procedure similar to the procedures in Nelson and Kim (1993), Mark (1995), Kothari and Shanken (1997), and Kilian (1999). We postulate that the data are generated by the following system under the null hypothesis of no predictability:

\begin{align*}
 r_t &= a_0 + \epsilon_{1,t}, \quad (4) \\
 x_t &= b_0 + b_1 \cdot x_{t-1} + \ldots + b_p \cdot x_{t-p} + \epsilon_{2,t}, \quad (5)
\end{align*}

where the disturbance vector \(\epsilon_t = (\epsilon_{1,t}, \epsilon_{2,t})' \) is independently and identically distributed with covariance matrix \(\Sigma \). We first estimate equations (4) and (5) via OLS, with the lag order \((p) \) in equation (5) selected using the AIC (considering a maximum lag order of four),\(^{11}\) and compute the OLS residuals, \(\{\hat{\epsilon}_t = (\hat{\epsilon}_{1,t}, \hat{\epsilon}_{2,t})'\}_t^{T-p} \). In order to generate a series of disturbances for our pseudo-sample, we randomly draw (with replacement) \(T + 100 \) times from the OLS residuals, \(\{\hat{\epsilon}_t\}_t^{T-p} \), giving us a pseudo-series of disturbance terms, \(\{\hat{\epsilon}^*_t\}_t^{T+100} \). Note that we draw from the OLS residuals in tandem, thus preserving the contemporaneous correlation between the disturbances in the original sample.\(^{12}\) Denote the OLS estimate

\(^{11}\) Kilian (1999) recommends using the AIC to select the lag order in equation (5).
\(^{12}\) This is especially important when \(x_t \) is a valuation ratio, such as the price-earnings ratio. Consider a positive shock to \(x_t \) (a positive realization of \(\epsilon_{2,t} \)) which raises stock prices. This shock is also likely to generate an increase in \(r_t \) (and thus be associated with a positive realization of \(\epsilon_{1,t} \)), as movements in stock prices are an important component of stock returns. Indeed, the contemporaneous correlation between \(\epsilon_{1,t} \) and \(\epsilon_{2,t} \) gives rise to biased estimates of \(\beta \) in equation (1), as shown by Stambaugh (1986, 1999) and noted above in Section 2.1. By drawing the OLS residuals in tandem, the bootstrap procedure explicitly controls for the correlation between \(\epsilon_{1,t} \) and \(\epsilon_{2,t} \) (and thus the relation between stock returns and prices) in the data.
of \(a_0 \) in equation (4) by \(\hat{a}_0 \), the OLS estimate of \(b_0 \) in equation (5) by \(\hat{b}_0 \), and the bias-adjusted OLS estimates of \((b_1, \ldots, b_p) \) by \((\hat{b}_1^A, \ldots, \hat{b}_p^A) \), where we use the bias adjustments in Shaman and Stine (1988, Table 1). Using \(\{\hat{e}_{t}^{*}\}_{t=1}^{T+100} \), \((\hat{a}, \hat{b}_0, \hat{b}_1^A, \ldots, \hat{b}_p^A) \) in equations (4) and (5), and setting the initial observations for \((x_{t-1}, \ldots, x_{T-p}) \) equal to zero in equation (5), we can build up a pseudo-sample of \(T + 100 \) observations for \(r_t \) and \(x_t, \{r_t^*, x_t^*\}_{t=1}^{T+100} \). We drop the first 100 transient start-up observations in order to randomize the initial \((x_{t-1}, \ldots, x_{T-p}) \) observations, leaving us with pseudo-sample of \(T \) observations, matching the original sample. For the pseudo-sample, we calculate the t-statistic corresponding to \(\beta \) in the in-sample predictive regression model, equation (1), and the two out-of-sample statistics outlined in Section 2.2. We repeat this process 1,000 times, giving us an empirical distribution for the in-sample t-statistic and each of the out-of-sample statistics. For each of the statistics, the p-value is the proportion of the bootstrap statistics that are greater than the statistic computed using the original sample.

2.4. Data-Mining Bootstrap Procedure

When testing the predictive ability of a large number of financial variables, data mining becomes a serious concern. Lo and MacKinlay (1990) and Foster, Smith, and Whaley (1997) point this out with respect to in-sample tests of security return predictability. While out-of-sample tests are widely viewed as an effective guard against data mining, Inoue and Kilian (2004, p. 374) recently argue that “to the extent that data mining is a potential concern, we should be equally skeptical of in-sample and out-of-sample tests of predictability when standard critical values are used.” The problem is that, whether using in-sample or out-of-sample tests, researchers can consider a large number of potential predictors but focus on the “best” results.

As emphasized by Inoue and Kilian (2004), the key to controlling for data mining is the use of appropriate critical values for both in-sample and out-of-sample predictability tests. They consider a data-mining environment that is relevant for the predictability tests used in the present paper. Suppose we consider
different financial variables as candidate predictors in the predictive regression model, equation (1):

\[x_{j,t}, j = 1, \ldots, J \]. The bootstrap procedure in Section 2.3 above implicitly assumes that we analyze each financial variable in isolation, but we are actually considering a large number of potential predictors, and this can lead to size distortions. In order to account for data mining when testing predictability, Inoue and Kilian (2004) specify the null hypothesis as \(H_0 : \beta_j = 0 \) for all \(j \) and the alternative hypothesis as \(H_1 : \beta_j > 0 \) for some \(j \), where \(\beta_j \) is the slope coefficient in equation (1) when the explanatory variable is \(x_{j,t} \). For an in-sample test statistic, they suggest using \(\max_{j=1, \ldots, J} t_{\hat{\beta}_j} \), where \(t_{\hat{\beta}_j} \) is the \(t \)-statistic corresponding to \(\beta_j \). For out-of-sample tests statistics, they suggest using the maximal \(MSE-F \) and maximal \(MSE-NEW \) statistics. Inoue and Kilian (2004) derive the asymptotic distribution for the maximal in-sample and out-of-sample statistics under the null hypothesis of no predictability, as well as local alternatives, in this data-mining environment. The limiting distributions are generally data-dependent, making inferences based on asymptotic distributions difficult. Inoue and Kilian (2004) recommend that bootstrap procedures be used in practice.

We modify the bootstrap procedure in Section 2.3 above in order to explicitly account for data mining. With \(J \) different financial variables serving as candidate predictors in the predictive regression model, we posit that the data are generated by the following system under the null hypothesis of no predictability:

\[
\begin{align*}
JJJt & = a_0 + \epsilon_{1,t}, \\
x_{1,t} & = b_{1,0} + b_{1,1} \cdot x_{1,t-1} + \ldots + b_{1,p_1} \cdot x_{1,t-p_1} + \epsilon_{1,2,t}, \\
\vdots & \\
x_{J,t} & = b_{J,0} + b_{J,1} \cdot x_{J,t-1} + \ldots + b_{J,p_J} \cdot x_{J,t-p_J} + \epsilon_{J,2,t},
\end{align*}
\]

where the disturbance vector \(\epsilon_t = (\epsilon_{1,t}, \epsilon_{1,2,t}, \ldots, \epsilon_{J,2,t})' \) is independently and identically distributed with covariance matrix \(\Sigma \). We first estimate equation (6) and each of the AR processes in equation (7) via OLS. Note that the lag order for each of the AR processes in equation (7) can differ, and we select each lag order
using the AIC (considering a maximum lag order of four).\(^{13}\) We then compute the OLS residuals, \(\{\hat{\epsilon}_t = (\hat{\epsilon}_{1,t}, \hat{\epsilon}_{2,t}, \ldots, \hat{\epsilon}_{J,t})^{T-p}\), where \(p = \max_{j=1, \ldots, J} p_j\). In order to generate a series of disturbances for our pseudo-sample, we randomly draw (with replacement) \(T + 100\) times from the OLS residuals, \(\{\hat{\epsilon}_t\}_{t=1}^{T-p}\), giving us a pseudo-series of disturbance terms, \(\{\hat{\epsilon}_t^*\}_{t=1}^{T+100}\). Drawing the OLS residuals in tandem preserves the contemporaneous correlation between all of the disturbances in the original sample. Using the pseudo-series of disturbance terms, the OLS estimates of the coefficients in equations (6) and (7),\(^{14}\) and setting the initial observations for each of the \(x_{j,t}\) variables equal to zero in equation (7), we can build up a pseudo-sample of \(T + 100\) observations for \(r_t\) and \(x_{1,t}, \ldots, x_{J,t}\), \(\{r_t^*, x_{1,t}^*, \ldots, x_{J,t}^*\}_{t=1}^{T+100}\). We drop the first 100 transient start-up observations in order to randomize the initial observations, leaving us with pseudo-sample of \(T\) observations, matching the original sample. For the pseudo-sample, we calculate the \(t\)-statistic corresponding to \(\beta_j\) in the in-sample predictive regression model and the two out-of-sample statistics for each of the \(x_{j,t}^*\) variables in turn, and we store the maximal \(t\)-statistic and maximal \(MSE-F\) and \(ENC-NEW\) statistics. We repeat this process 1,000 times, giving us an empirical distribution for the maximal \(t\)-statistic and each of the maximal out-of-sample statistics. After ordering the empirical distribution for each maximal statistic, the 900\(^{th}\), 950\(^{th}\), and 990\(^{th}\) values serve as the 10\%, 5\%, and 1\% critical values for each maximal statistic.

3. Empirical Results

We use annual observations for 1927-1999, based on data availability, for two stock return series—log real returns on the S&P 500 and CRSP equal-weighted portfolios—and nine financial variables. The nine financial variables all appear in the extant literature: dividend-price ratio, log-level; price-earnings ratio, log-level; book-to-market ratio, log-level; Fed q (market value-to-net worth ratio), log-level; payout (dividend-earnings) ratio, log-level; term spread; default spread; short-term interest rate; equity share. The

\(^{13}\) In order to conserve degrees of freedom, we do not estimate a VAR process for \((x_{1,t}, \ldots, x_{J,t})\).

\(^{14}\) We again use bias-adjusted slope coefficients for the AR processes in equation (7).
term spread is measured as the difference between long-term and short-term government bond yields. The default spread is the difference between the Moody’s seasoned Baa corporate bond yield and the Moody’s seasoned Aaa corporate bond yield. The equity share is the annual total of equity issues divided by the sum of the annual total of equity issues and the annual total of long-term debt issues.15 Theory suggests that increases in the dividend-price ratio, book-to-market ratio, payout ratio, term spread, and default spread should increase future returns, while increases in the price-earnings ratio, Fed q, short-term interest rate, and equity share should decrease future returns. In order to express the null hypothesis as $\beta > 0$ in equation (1) for all of the financial variables, we take the negative of the latter four variables before they enter into equation (1). Descriptive statistics for the two returns and each financial variable are reported in Table 1. It is evident that the two return series are highly volatile and display only weak serial correlation. Apart from the term spread and equity share, the financial variables display considerable persistence.

Tables 2 and 3 report in-sample predictive regression estimation results for horizons of 1, 5, and 10 years for S&P 500 and CRSP equal-weighted log real returns. Given that we use annual data for 1927-1999, we have 72 usable observations when $k = 1$ for the in-sample predictive regression model. The total number of usable observations decreases by one for each unit increase in k, leaving 63 usable observations when $k = 10$. The p-values for the in-sample t-statistics reported in Tables 2 and 3 are generated using the bootstrap procedure described above in Section 2.3. From Table 2, we see that the only financial variable that is a significant in-sample predictor of real S&P 500 returns at the 1-year horizon is the equity share. At the 5-year horizon, the term spread is a significant predictor (at the 10% level) of real S&P 500 returns. At the long horizon of 10 years, there is more evidence of in-sample predictability, as both the price-earnings ratio and Fed q are significant predictors at the 10-year horizon. This is consistent with the pattern in the literature, where evidence of in-sample predictability increases with the horizon. Overall, we identify four variables that have significant in-sample predictive ability for

15 The financial variables are described in more detail in a Data Appendix available at http://pages.slu.edu/faculty/rapachde/Research.htm.
S&P 500 returns at some horizon in Table 2: price-earnings ratio, Fed q, term spread, and equity share.

Turning to the in-sample predictive regression estimation results for the CRSP equal-weighted log real returns in Table 3, four variables—book-to-market ratio, Fed q, default spread, and equity share—show significant in-sample predictive ability at the 1-year horizon at conventional significance levels. At the 5-year horizon, the dividend-price ratio and, again, the equity share have significant predictive power, while the term spread and short-term interest rate have significant predictive ability at the 10-year horizon. Interestingly, the pattern of predictive ability for the Fed q is quite different for the CRSP equal-weighted and S&P 500 returns. From Table 2, we see that the Fed q has significant in-sample predictive power at the long horizon of 10 years for S&P 500 returns, while from Table 3 we see that it has predictive power at the short horizon of 1 year for CRSP equal-weighted returns. Overall, we find significant evidence of in-sample predictive ability for a number of financial variables in Tables 2 and 3.

We next discuss the out-of-sample test results in Table 2 and 3. We test out-of-sample predictive ability using the $MSE-F$ and $ENC-NEW$ statistics described above in Section 2.2. We first must decide on the sample-split parameter (R), and we face a tradeoff at this point. If we limit the out-of-sample forecasts to very recent periods, we have very few out-of-sample observations to use in calculating the out-of-sample test statistics. This makes our inferences regarding out-of-sample predictability less reliable. If we begin our out-of-sample forecasts very early in the sample, we do not have many in-sample observations available to estimate the predictive regression models used to generate the initial out-of-sample forecasts. As a reasonable compromise, we decide to reserve the first half of the sample to estimate the unrestricted and restricted predictive regression models used to form the initial recursive out-of-sample forecasts, so that our first out-of-sample forecasts are for 1964. This leaves us with 36 out-of-sample observations to use in computing the out-of-sample test statistics when $k = 1$ and 27 out-of-sample observations when $k = 10$. Note that our out-of-sample forecasts cover widely varying market conditions, including the bull market of the 1960s, the bear market of the 1970s, the 1987 crash, and the recent bull market of the 1990s. As with the in-sample tests, the p-values for the out-of-sample results
reported in Tables 2 and 3 are generated using the bootstrap procedure described above in Section 2.3.

The sense of the relatively few extant studies that consider out-of-sample tests, such as Bossaerts and Hillion (1999) and Goyal and Welch (2003), is that while a number of financial variables display significant in-sample predictive ability with respect to stock returns, there is very little evidence of return predictability using out-of-sample tests. With this in mind, the most striking result in Table 2 is that there is no disagreement between the in-sample and out-of-sample test results when we use the relatively powerful $MSE-F$ and $ENC-NEW$ out-of-sample statistics. Each instance of a significant in-sample t-statistic for annual S&P 500 returns is matched by significant out-of-sample $MSE-F$ and $ENC-NEW$ statistics. Turning to Table 3, we see that three of the eight instances of a significant in-sample t-statistic find at least some out-of-sample corroboration (Fed q and equity share at the 1-year horizon and the equity share at the 5-year horizon). It is interesting to observe that we have two instances where there is evidence of significant out-of-sample predictive ability even when there is no evidence of significant in-sample predictive ability (price-earnings ratio at the 1-year horizon and dividend-price ratio at the 10-year horizon).

To control for data mining, we use the data-mining environment and the bootstrap procedure described above in Section 2.4. Critical values for the in-sample and two out-of-sample maximal statistics are reported in Table 4. From the S&P 500 return results reported in Table 2, the maximal t-statistic at the 1-year horizon is 3.01, corresponding to the equity share. From Panel A in Table 4, we see that the in-sample maximal t-statistic is still significant at the 5% level when we use critical values that take data

16 Given the econometric difficulties associated with the in-sample t-statistic described above in Section 2.1, we performed a Monte Carlo simulation to investigate whether basing inferences for the maximal in-sample t-statistics on the data-mining robust critical values in Table 4 leads to size distortions. We generated 1,000 pseudo-samples of data for returns and all nine potential predictors under the null hypothesis of no predictability. For each pseudo-sample, we calculated the in-sample t-statistic corresponding to each potential predictor and stored the maximal t-statistic. We recorded the proportion of the simulated maximal t-statistics that were greater than the maximal t-statistic critical values reported in Table 4. For S&P 500 returns and the 10% (5%, 1%) significance level, the proportions of rejections were 0.09 (0.05, 0.01), 0.12 (0.06, 0.01), and 0.08 (0.04, 0.02) at the 1-year, 5-year, and 10-year horizons. For CRSP equal-weighted returns and the 10% (5%, 1%) significance level, the proportions of rejections were 0.10 (0.04, 0.01), 0.09 (0.04, 0.01), and 0.09 (0.05, 0.01) at the 1-year, 5-year, and 10-year horizons. It does not appear that basing inference on the data-mining robust critical values in Table 4 leads to serious size distortions.
mining into account. The out-of-sample maximal $MSE-F$ statistic of 3.50 corresponding to the equity share is also significant at the 10% level according to the critical values in Table 4.17 In light of the critical values in Table 4, the predictive ability detected in Table 2 for the equity share does not appear attributable to data mining. At the 5-year horizon, the maximal t-statistic from Table 2 is 1.57, corresponding to the term spread. According to the critical values in Table 4, this maximal t-statistic is not significant when we account for data mining. In addition, neither of the maximal out-of-sample statistics from Table 2 are significant at the 5-year horizon using the critical values in Table 4. The evidence of S&P 500 return predictability at the 5-year horizon in Table 2 is not robust to an environment that accounts for data mining. At the 10-year horizon, the maximal t-statistic from Table 2 is 7.27, corresponding to the Fed q. This maximal t-statistic is not significant at conventional significance levels according to the data-mining robust critical values. Interestingly, however, the out-of-sample maximal $MSE-F$ statistic of 53.24 corresponding to the Fed q is significant at the 5% level using the data-mining robust critical values, and the maximal $ENC-NEW$ statistic of 44.29, again corresponding to the Fed q, is significant at the 10% level. Thus, when we control for data mining, we still find significant evidence of predictability at the 10-year horizon.

Data-mining robust critical values for the maximal statistics corresponding to CRSP equal-weighted returns are reported in Panel B of Table 4. From Table 3, the maximal t-statistic at the 1-year horizon is 3.89, again corresponding to the equity share. According to the critical values in Table 4, the maximal t-statistic is significant at the 1% level.18 (The maximal t-statistic corresponding to the Fed q,

17 As noted above in footnote 4, Inoue and Kilian (2004) show that in-sample tests of predictability are more powerful than out-of-sample tests when data-mining robust critical values are used. This is due, in part, to the fact that in-sample tests use economic theory to specify that $\beta_j > 0$ under the alternative hypothesis, while the out-of-sample tests do not place such a restriction on β_j under the alternative hypothesis. Given that in-sample tests are more powerful than out-of-sample tests when data-mining robust critical values are used, evidence of predictability according to out-of-sample tests can be construed as especially strong evidence of predictability under a broader interpretation of the conventional wisdom.

18 As noted in the introduction, Foster, Smith, and Whaley (1997) provide a theoretical analysis of data mining in predictive regression models. Based on the Bonferroni inequality, they develop a weaker bound for the distribution of the maximal R^2 statistic under the null hypothesis of no predictability when a total of m explanatory variables
2.81, is also significant at the 1-year horizon.) In addition, the maximal out-of-sample $MSE-F$ statistic of 4.03 corresponding to the equity share is significant at the 10% level, and the maximal $ENC-NEW$ statistic of 5.57 is significant at the 5% level. None of the in-sample or out-of-sample maximal statistics are significant at the 5-year and 10-year horizons, so that robust evidence of predictability for CRSP equal-weighted returns is limited to a short horizon.\(^\text{19}\)

We also conducted in-sample and out-of-sample predictability tests using postwar quarterly data covering 1953:2-2000:4 for S&P 500 and CRSP equal-weighted log real returns. We tested the predictive ability of eight variables: dividend-price ratio, log-level; price-earnings ratio, log-level; Fed q, log-level; payout ratio, log-level; term spread; default spread; short-term interest rate (measured in deviations from a backward-looking 1-year moving average); consumption-wealth ratio (Lettau and Ludvigson, 2001, 2003; it is calculated as $cay = c - 0.2985 \cdot a - 0.597 \cdot y$, where c is real per-capita consumption of nondurables and services, a is financial wealth, and y is labor income, all measured in log-levels). In order to conserve space, we briefly describe the results.\(^\text{20}\)

We consider horizons of 1, 8, and 16 quarters and our out-of-sample period begins in 1990:2, which corresponds to the beginning of the Bossaerts and Hillion (1999) out-of-sample period.\(^\text{21}\) When we use S&P 500 returns, the in-sample t-statistic is significant at the 1-quarter horizon for the consumption-wealth ratio, term spread, default spread, and short-term interest rate. At the 8-quarter horizon, the t-statistics are considered in regression models that include q explanatory variables at a time; see equation (3) in Foster, Smith, and Whaley (1997, p. 595). In our applications in Tables 2 and 3, $m = 9$ and $q = 1$. According to this distribution, the maximal R^2 statistic of 0.11 at the 1-year horizon in Table 2 is significant at the 5% level (the 5% critical value is 0.105), and the maximal R^2 statistic of 0.18 at the 1-year horizon in Table 3 is significant at the 1% level (the 1% critical value is 0.140). There is thus significant evidence of predictability in Tables 2 and 3 after we control for data mining using the distribution in Foster, Smith, and Whaley (1997). As the distribution theory in Foster, Smith, and Whaley (1997) assumes that the disturbance term in equation (1) is serially uncorrelated, we cannot use it to make inferences for the maximal R^2 at the 5-year and 10-year horizons in Tables 2 and 3.

\(^\text{19}\) We also calculated in-sample and out-of-sample statistics using CRSP value-weighted returns in place of S&P 500 returns, and the results are very similar to those reported for S&P 500 returns. The complete tabulated results for CRSP value-weighted returns are available at http://pages.slu.edu/faculty/rapachde/Research.htm.

\(^\text{20}\) The complete tabulated results for quarterly data are available at http://pages.slu.edu/faculty/rapachde/Research.htm.

\(^\text{21}\) Bossaerts and Hillion (1999) use monthly data and an out-of-sample period beginning in 1990:06.
statistic is significant for consumption-wealth ratio and the short-term interest rate, while it is significant for the consumption-wealth ratio and the term spread at the 16-quarter horizon. For the out-of-sample tests, the ENC-NEW statistic corroborates the in-sample finding of predictive ability for the consumption-wealth ratio at all three forecast horizons, and the MSE-F statistic also corroborates the in-sample finding for the consumption-wealth ratio at the 8-quarter and 16-quarter horizons. According to the data-mining robust critical values, the maximal t-statistic (ENC-NEW statistic) is significant at the 1% (5%) level at the 1-quarter horizon.

When we use CRSP equal-weighted returns, the in-sample t-statistic is significant at the 1-quarter horizon for the dividend-price ratio, consumption-wealth ratio, term spread, default spread, and short-term interest rate and significant at horizons of 8 and 16 quarters for the consumption-wealth ratio. The significant evidence of in-sample predictive ability at horizons of 1, 8, and 16 quarters for the consumption-wealth ratio is accompanied by significant evidence of out-of-sample predictive ability at these three horizons according to the ENC-NEW statistic. Again matching the in-sample results, both the MSE-F and ENC-NEW statistics indicate significant out-of-sample predictive ability for the term spread at the 1-quarter horizon, while the ENC-NEW statistic indicates significant out-of-sample predictive ability for the short-term interest rate at the 1-quarter horizon. Using data-mining robust critical values, the maximal t-statistic (ENC-NEW statistic) is significant at the 1% (5%) level at the 1-quarter horizon.

4. Conclusion

In the present paper, we show that there is not a great deal of discrepancy between in-sample and out-of-sample tests of stock return predictability, once we use relatively powerful out-of-sample tests. The extant literature on stock return predictability thus appears to overstate the degree of disparity between in-sample and out-of-sample test results. We also test for in-sample and out-of-sample predictability in a data-mining environment suggested by Inoue and Kilian (2004). Using a bootstrap procedure that delivers data-mining robust critical values, we find that certain financial variables, such as the equity share and
Fed q, have significant in-sample and out-of-sample predictive ability. Given that we obtain evidence of predictability in an econometric environment that explicitly controls for data mining—in addition to potential biases associated with regressor endogeneity and overlapping observations—our in-sample and out-of-sample test results strengthen the case for a predictable component in stock returns.\(^\text{22}\)

\(^{22}\) Given that the equity share and Fed q have appeared fairly recently in the literature, this raises the interesting issue of whether these variables will continue to display significant predictive ability in future studies. Also note that Cremers (2002) and Avramov (2002) analyze return predictability for a large number of potential predictors in a Bayesian context. They find some evidence of out-of-sample predictive ability using Bayesian methods.
References

Mankiw, N.G. and M.D. Shapiro, 1986, Do we reject too often? Economic Letters 20, 139-145.

McCracken, M.W., 2004, Asymptotics for out-of-sample tests of Granger causality, Manuscript, University of Missouri at Columbia.

Table 1: Descriptive statistics, annual data, 1927-1999

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>AC(1)</th>
<th>AC(2)</th>
<th>AC(3)</th>
<th>AC(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500 log real return</td>
<td>7.40</td>
<td>18.55</td>
<td>0.04</td>
<td>-0.18</td>
<td>0.05</td>
<td>-0.11</td>
</tr>
<tr>
<td>CRSP equal-weighted log real return</td>
<td>9.59</td>
<td>27.67</td>
<td>0.06</td>
<td>-0.21</td>
<td>-0.11</td>
<td>-0.13</td>
</tr>
<tr>
<td>Dividend-price ratio, log-level, S&P 500 index</td>
<td>-3.24</td>
<td>0.38</td>
<td>0.79</td>
<td>0.59</td>
<td>0.50</td>
<td>0.39</td>
</tr>
<tr>
<td>Dividend-price ratio, log-level, CRSP equal-weighted index</td>
<td>-3.49</td>
<td>0.45</td>
<td>0.90</td>
<td>0.78</td>
<td>0.68</td>
<td>0.64</td>
</tr>
<tr>
<td>Price-earnings ratio, log-level</td>
<td>2.65</td>
<td>0.36</td>
<td>0.74</td>
<td>0.54</td>
<td>0.39</td>
<td>0.29</td>
</tr>
<tr>
<td>Book-to-market ratio, log-level</td>
<td>-0.49</td>
<td>0.42</td>
<td>0.84</td>
<td>0.65</td>
<td>0.49</td>
<td>0.38</td>
</tr>
<tr>
<td>Fed q, log-level</td>
<td>-0.02</td>
<td>0.35</td>
<td>0.82</td>
<td>0.64</td>
<td>0.52</td>
<td>0.44</td>
</tr>
<tr>
<td>Payout ratio, log-level</td>
<td>-0.58</td>
<td>0.26</td>
<td>0.81</td>
<td>0.61</td>
<td>0.45</td>
<td>0.36</td>
</tr>
<tr>
<td>Term spread</td>
<td>1.45</td>
<td>1.11</td>
<td>0.51</td>
<td>0.19</td>
<td>0.00</td>
<td>-0.04</td>
</tr>
<tr>
<td>Default spread</td>
<td>1.14</td>
<td>0.71</td>
<td>0.84</td>
<td>0.62</td>
<td>0.46</td>
<td>0.37</td>
</tr>
<tr>
<td>Short-term interest rate</td>
<td>3.88</td>
<td>3.13</td>
<td>0.93</td>
<td>0.83</td>
<td>0.77</td>
<td>0.73</td>
</tr>
<tr>
<td>Equity share</td>
<td>0.21</td>
<td>0.11</td>
<td>0.45</td>
<td>0.15</td>
<td>0.04</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Notes to Table 1: The first-order through fourth-order autocorrelations are reported in the fourth through seventh columns.
Table 2: In-sample predictive regression model estimation results and out-of-sample forecasting test results for horizons of 1, 5, and 10 years, annual S&P 500 log real returns

<table>
<thead>
<tr>
<th>Horizon:</th>
<th>1 year</th>
<th>5 years</th>
<th>10 years</th>
<th>1 year</th>
<th>5 years</th>
<th>10 years</th>
<th>1 year</th>
<th>5 years</th>
<th>10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividend-price ratio, log-level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.99</td>
<td>16.48</td>
<td>32.70</td>
<td>-1.57</td>
<td>0.24</td>
<td>-13.14</td>
<td>6.22</td>
<td>9.21</td>
<td>5.62</td>
</tr>
<tr>
<td>t-statistic</td>
<td>0.42 [0.73]</td>
<td>1.62 [0.45]</td>
<td>1.89 [0.50]</td>
<td>-0.70 [0.76]</td>
<td>0.05 [0.50]</td>
<td>-2.20 [0.90]</td>
<td>3.01 [0.00]</td>
<td>1.56 [0.12]</td>
<td>1.31 [0.21]</td>
</tr>
<tr>
<td>R^2</td>
<td>0.00</td>
<td>0.12</td>
<td>0.23</td>
<td>0.01</td>
<td>0.00</td>
<td>0.06</td>
<td>0.11</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>Theil’s U</td>
<td>1.03</td>
<td>1.03</td>
<td>0.89</td>
<td>1.02</td>
<td>1.04</td>
<td>1.13</td>
<td>0.96</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>MSE-F</td>
<td>-2.13 [0.73]</td>
<td>-2.05 [0.42]</td>
<td>7.46 [0.18]</td>
<td>-1.44 [0.68]</td>
<td>-2.32 [0.51]</td>
<td>-5.97 [0.69]</td>
<td>3.50 [0.02]</td>
<td>0.34 [0.25]</td>
<td>-0.10 [0.35]</td>
</tr>
<tr>
<td>ENC-NEW</td>
<td>0.03 [0.47]</td>
<td>3.28 [0.25]</td>
<td>5.33 [0.28]</td>
<td>-0.64 [0.83]</td>
<td>-1.06 [0.69]</td>
<td>-2.28 [0.80]</td>
<td>3.81 [0.01]</td>
<td>0.66 [0.27]</td>
<td>0.02 [0.42]</td>
</tr>
</tbody>
</table>

Price-earnings ratio, log-level | | | | | | | | | |
β	2.12	12.19	36.11	0.07	1.57	1.53	0.04
t-statistic	0.94 [0.28]	1.73 [0.25]	5.64 [0.02]	0.00	0.09	0.04	
R^2	0.01	0.09	0.39	1.01	0.95	1.00	
Theil’s U	1.04	1.06	0.81	-0.81 [0.56]	3.72 [0.04]	0.22 [0.29]	
MSE-F	-2.44 [0.87]	-3.60 [0.64]	14.07 [0.04]	-0.39 [0.72]	3.04 [0.06]	0.48 [0.29]	
ENC-NEW	0.08 [0.35]	2.03 [0.23]	12.84 [0.04]				

Book-to-market ratio, log-level | | | | | | | | | |
β	1.92	8.25	34.33	0.77	0.94	-2.68
t-statistic	0.81 [0.41]	0.65 [0.55]	2.55 [0.28]	0.35 [0.41]	0.15 [0.52]	-0.24 [0.63]
R^2	0.01	0.03	0.20	0.00	0.00	0.00
Theil’s U	1.22	1.25	0.98	1.00	1.02	1.13
MSE-F	-11.81 [1.00]	-11.67 [0.84]	1.34 [0.26]	-0.14 [0.25]	-1.24 [0.38]	-5.96 [0.74]
ENC-NEW	-1.76 [0.99]	-2.19 [0.78]	3.79 [0.27]	-0.02 [0.38]	-0.60 [0.56]	-2.68 [0.87]

Fed q, log-level | | | | | | | | | |
β	4.29	24.08	53.35	-0.51	0.24	-1.79
t-statistic	1.90 [0.21]	2.92 [0.26]	7.27 [0.06]	-0.23 [0.53]	0.04 [0.63]	-0.14 [0.57]
R^2	0.05	0.30	0.72	0.00	0.00	0.00
Theil’s U	1.11	1.06	0.58	1.05	1.35	1.71
MSE-F	-6.64 [0.97]	-3.30 [0.49]	53.24 [0.02]	-3.11 [0.87]	-14.39 [0.93]	-17.78 [0.90]
ENC-NEW	1.48 [0.18]	7.12 [0.18]	44.29 [0.03]	-0.56 [0.73]	-0.55 [0.49]	-2.14 [0.70]
Notes to Table 2: p-values, computed using the bootstrap procedure described in Section 2.3, are given in brackets. Statistics in bold indicate significance at the 10% level using the p-values given in brackets. 0.00 indicates < 0.005. \(\beta \), \(t \)-statistic, and \(R^2 \) are the OLS estimate of \(\beta \), its corresponding \(t \)-statistic, and the goodness-of-fit measure, respectively, for the in-sample predictive regression model, equation (1), described in Section 2.1. (As noted in the text, we first divide each financial variable by its standard deviation before it enters equation (1), and we take the negative of the price-earnings ratio, log-level; Fed q, log-level; short-term interest rate; and equity share before they enter into equation (1).) Theil’s \(U \) is the ratio of the root-mean-squared forecast errors for the unrestricted and restricted models described in Section 2.2. The \(MSE-F \) statistic is used to test the null hypothesis that the MSE for the unrestricted model forecasts is less than the MSE for the restricted model forecasts. The \(ENC-NEW \) statistic is used to test the null hypothesis that restricted model forecasts encompass the unrestricted model forecasts.
Table 3: In-sample predictive regression model estimation results and out-of-sample forecasting test results for horizons of 1, 5, and 10 years, annual CRSP equal-weighted log real returns

<table>
<thead>
<tr>
<th>Horizon:</th>
<th>1 year</th>
<th>5 years</th>
<th>10 years</th>
<th>1 year</th>
<th>5 years</th>
<th>10 years</th>
<th>1 year</th>
<th>5 years</th>
<th>10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dividend-price ratio, log-level</td>
<td>Payout ratio, log-level</td>
<td>Equity share</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>4.30</td>
<td>18.32</td>
<td>24.36</td>
<td>2.09</td>
<td>9.29</td>
<td>7.85</td>
<td>11.67</td>
<td>13.24</td>
<td>6.46</td>
</tr>
<tr>
<td>t-statistic</td>
<td>1.30 [0.11]</td>
<td>2.40 [0.07]</td>
<td>2.68 [0.11]</td>
<td>0.62 [0.25]</td>
<td>0.91 [0.25]</td>
<td>1.34 [0.24]</td>
<td>3.89 [0.00]</td>
<td>3.43 [0.01]</td>
<td>1.58 [0.15]</td>
</tr>
<tr>
<td>R^2</td>
<td>0.02</td>
<td>0.11</td>
<td>0.22</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.18</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>Theil’s U</td>
<td>1.01</td>
<td>1.02</td>
<td>0.95</td>
<td>1.02</td>
<td>1.06</td>
<td>0.99</td>
<td>0.95</td>
<td>0.97</td>
<td>1.01</td>
</tr>
<tr>
<td>MSE-F</td>
<td>-0.62 [0.13]</td>
<td>-1.05 [0.11]</td>
<td>2.70 [0.09]</td>
<td>-1.19 [0.60]</td>
<td>-3.70 [0.64]</td>
<td>0.65 [0.28]</td>
<td>3.43 [0.01]</td>
<td>2.28 [0.06]</td>
<td>-0.53 [0.45]</td>
</tr>
<tr>
<td>ENC-NEW</td>
<td>1.58 [0.12]</td>
<td>4.5 [0.16]</td>
<td>5.15 [0.24]</td>
<td>-0.20 [0.48]</td>
<td>-0.40 [0.49]</td>
<td>0.81 [0.36]</td>
<td>5.57 [0.00]</td>
<td>1.76 [0.10]</td>
<td>-0.20 [0.56]</td>
</tr>
<tr>
<td></td>
<td>Price-earnings ratio, log-level</td>
<td>Term spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>4.23</td>
<td>16.95</td>
<td>19.67</td>
<td>2.55</td>
<td>10.86</td>
<td>13.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-statistic</td>
<td>1.26 [0.17]</td>
<td>2.29 [0.14]</td>
<td>1.95 [0.27]</td>
<td>0.78 [0.21]</td>
<td>1.42 [0.11]</td>
<td>2.35 [0.05]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.02</td>
<td>0.09</td>
<td>0.15</td>
<td>0.01</td>
<td>0.05</td>
<td>0.08</td>
<td>0.10</td>
<td>0.09</td>
<td>0.12</td>
</tr>
<tr>
<td>Theil’s U</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td>1.05</td>
<td>1.02</td>
<td>0.97</td>
<td>1.05</td>
<td>1.02</td>
<td>0.98</td>
</tr>
<tr>
<td>MSE-F</td>
<td>-0.14 [0.25]</td>
<td>0.79 [0.20]</td>
<td>0.97 [0.24]</td>
<td>-3.23 [0.96]</td>
<td>-1.11 [0.50]</td>
<td>1.66 [0.16]</td>
<td>5.57 [0.00]</td>
<td>1.76 [0.10]</td>
<td>-0.20 [0.56]</td>
</tr>
<tr>
<td>ENC-NEW</td>
<td>1.14 [0.10]</td>
<td>3.03 [0.14]</td>
<td>2.18 [0.24]</td>
<td>-0.93 [0.95]</td>
<td>1.62 [0.13]</td>
<td>2.15 [0.13]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Book-to-market ratio, log-level</td>
<td>Default spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>8.33</td>
<td>16.09</td>
<td>24.15</td>
<td>6.51</td>
<td>12.69</td>
<td>12.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-statistic</td>
<td>2.43 [0.03]</td>
<td>1.91 [0.22]</td>
<td>1.68 [0.37]</td>
<td>2.03 [0.03]</td>
<td>1.84 [0.14]</td>
<td>1.70 [0.22]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.08</td>
<td>0.06</td>
<td>0.13</td>
<td>0.06</td>
<td>0.06</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
<td>0.12</td>
</tr>
<tr>
<td>Theil’s U</td>
<td>1.23</td>
<td>1.05</td>
<td>1.01</td>
<td>1.01</td>
<td>1.01</td>
<td>0.98</td>
<td>1.01</td>
<td>1.01</td>
<td>0.98</td>
</tr>
<tr>
<td>MSE-F</td>
<td>-12.21 [1.00]</td>
<td>-3.13 [0.44]</td>
<td>-0.69 [0.34]</td>
<td>-0.69 [0.47]</td>
<td>-0.34 [0.29]</td>
<td>1.24 [0.22]</td>
<td>0.34 [0.24]</td>
<td>0.42 [0.33]</td>
<td>0.87 [0.31]</td>
</tr>
<tr>
<td>ENC-NEW</td>
<td>1.16 [0.12]</td>
<td>1.33 [0.28]</td>
<td>1.48 [0.35]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fed q, log-level</td>
<td>Short-term interest rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>9.32</td>
<td>24.96</td>
<td>29.65</td>
<td>1.30</td>
<td>9.05</td>
<td>14.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-statistic</td>
<td>2.81 [0.03]</td>
<td>2.68 [0.22]</td>
<td>2.37 [0.44]</td>
<td>0.40 [0.27]</td>
<td>1.56 [0.12]</td>
<td>2.94 [0.05]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.10</td>
<td>0.17</td>
<td>0.29</td>
<td>0.00</td>
<td>0.03</td>
<td>0.11</td>
<td>1.08</td>
<td>1.23</td>
<td>1.37</td>
</tr>
<tr>
<td>Theil’s U</td>
<td>1.07</td>
<td>0.97</td>
<td>0.94</td>
<td>1.08</td>
<td>1.23</td>
<td>1.37</td>
<td>1.08</td>
<td>1.23</td>
<td>1.37</td>
</tr>
<tr>
<td>MSE-F</td>
<td>-4.69 [0.92]</td>
<td>1.88 [0.23]</td>
<td>3.66 [0.26]</td>
<td>-4.96 [0.97]</td>
<td>-10.94 [0.84]</td>
<td>-12.51 [0.76]</td>
<td>-0.88 [0.88]</td>
<td>0.46 [0.33]</td>
<td>4.68 [0.21]</td>
</tr>
<tr>
<td>ENC-NEW</td>
<td>3.52 [0.04]</td>
<td>5.23 [0.22]</td>
<td>4.27 [0.36]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes to Table 3: p-values, computed using the bootstrap procedure described in Section 2.3, are given in brackets. Statistics in bold indicate significance at the 10% level using the p-values given in brackets. 0.00 indicates < 0.005. β, t-statistic, and R^2 are the OLS estimate of β, its corresponding t-statistic, and the goodness-of-fit measure, respectively, for the in-sample predictive regression model, equation (1), described in Section 2.1. (As noted in the text, we first divide each financial variable by its standard deviation before it enters equation (1), and we take the negative of the price-earnings ratio, log-level; Fed q, log-level; short-term interest rate; and equity share before they enter into equation (1).) Theil’s U is the ratio of the root-mean-squared forecast errors for the unrestricted and restricted models described in Section 2.2. The $MSE-F$ statistic is used to test the null hypothesis that the MSE for the unrestricted model forecasts is less than the MSE for the restricted model forecasts. The $ENC-NEW$ statistic is used to test the null hypothesis that restricted model forecasts encompass the unrestricted model forecasts.
Table 4: Data-mining bootstrap critical values, annual S&P 500 and CRSP equal-weighted log real returns

<table>
<thead>
<tr>
<th>Horizon:</th>
<th>1 year</th>
<th></th>
<th></th>
<th>5 years</th>
<th></th>
<th></th>
<th>10 years</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10%</td>
<td>5%</td>
<td>1%</td>
<td>10%</td>
<td>5%</td>
<td>1%</td>
<td>10%</td>
<td>5%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>A. S&P 500 log real returns</td>
<td></td>
</tr>
<tr>
<td>maximal t-statistic</td>
<td>2.61</td>
<td>2.88</td>
<td>3.51</td>
<td>4.64</td>
<td>5.57</td>
<td>7.58</td>
<td>7.56</td>
<td>8.76</td>
<td>11.87</td>
<td></td>
</tr>
<tr>
<td>maximal $MSE-F$</td>
<td>3.44</td>
<td>4.39</td>
<td>8.83</td>
<td>17.05</td>
<td>23.44</td>
<td>45.30</td>
<td>36.60</td>
<td>52.21</td>
<td>105.06</td>
<td></td>
</tr>
<tr>
<td>maximal $ENC-NEW$</td>
<td>3.89</td>
<td>5.22</td>
<td>7.81</td>
<td>18.78</td>
<td>25.79</td>
<td>42.36</td>
<td>39.30</td>
<td>57.28</td>
<td>102.05</td>
<td></td>
</tr>
<tr>
<td>B. CRSP equal-weighted log real returns</td>
<td></td>
</tr>
<tr>
<td>maximal t-statistic</td>
<td>2.50</td>
<td>2.80</td>
<td>3.41</td>
<td>4.33</td>
<td>5.03</td>
<td>6.84</td>
<td>6.29</td>
<td>7.78</td>
<td>11.95</td>
<td></td>
</tr>
<tr>
<td>maximal $MSE-F$</td>
<td>3.25</td>
<td>4.41</td>
<td>7.91</td>
<td>16.15</td>
<td>24.56</td>
<td>45.48</td>
<td>30.65</td>
<td>48.82</td>
<td>101.02</td>
<td></td>
</tr>
<tr>
<td>maximal $ENC-NEW$</td>
<td>4.15</td>
<td>5.24</td>
<td>7.99</td>
<td>19.62</td>
<td>27.48</td>
<td>49.80</td>
<td>35.85</td>
<td>56.37</td>
<td>96.26</td>
<td></td>
</tr>
</tbody>
</table>

Notes to Table 4: Critical values computed using the data-mining bootstrap procedure described in Section 2.4. The critical values correspond to the maximum values of the statistics reported in Tables 2 (S&P 500 log real returns) and 3 (CRSP equal-weighted log real returns).